Зрелые эритроциты

Эритроциты в крови – что это? Почему важен уровень эритроцитов?

Зрелые эритроциты

Эритроциты – красные кровяные тельца, важнейший компонент крови человека, а также большинства животных и даже некоторых моллюсков. Эритроциты нужны, чтобы переносить кислород из легких или жабр по всему организму.

Как устроены эритроциты человека

Слово «эритроцит» образовалось от греческих «эритрос» – красный и «китос» – клетка, вместилище. В цитоплазме эритроцитов много гемоглобина: 270–400 млн молекул в каждой клетке.

Гемоглобин – это пигмент, который содержит ион железа. Он придает эритроцитам красный цвет и, что действительно важно, способен связывать кислород.

Размер эритроцита – 7-10 мкм, форма – двояковогнутый диск, такой себе бублик с тонкой плоской серединой. За счет выемок увеличена площадь поверхности эритроцита, а значит, он может переносить больше кислорода.

Сверху эритроцит покрыт мембранами. Плазматическая мембрана пропускает воду, кислород, углекислый газ, ионы натрия и калия. На поверхности липопротеидной мембраны расположены факторы систем групп крови и резус-факторы, а также некоторые антигены.

Как работают эритроциты

Эритроциты насыщаются кислородом в легких. Затем с током крови они разносятся по всему телу и отдают кислород различным органам. Взамен эритроциты забирают углекислый газ с помощью карбоангидразы и доставляют его обратно в легкие.

Эритроциты эластичные. За счет этого они легко движутся по самым мелким капиллярам – проходят даже через сосуды диаметром 2-3 мкм на скорости до 2 см в минуту. В зрелых клетках нет ядра и большей части других органелл, зато много гемоглобина – до 98% от массы эритроплазмы (клетки без учета органелл).

Каждую секунду в костном мозге образуется 2,4 млн новых эритроцитов. Каждый из них живет 100-120 дней, затем макрофаги уничтожают эти клетки в печени и селезенке. В целом же каждая четвертая клетка в нашем организме – эритроцит.

Почему важен уровень эритроцитов в анализе крови

Если эритроцитов мало, они не смогут эффективно справляться с доставкой кислорода. Меньше эритроцитов – меньше гемоглобина – меньше ионов железа, которые смогут связать и доставить кислород.

Органы, которые будут недополучать кислород, станут работать хуже. Естественно, это сразу же скажется на самочувствии, возникнет кислородное голодание органов и тканей.

С течением жизни количество эритроцитов меняется. У мужчин их в среднем больше, чем у женщин – 3,9–5,5⋅1012 на литр против 3,9–4,7⋅1012 на литр. У новорожденных до 6⋅1012 эритроцитов на литр, у пожилых людей – до 4⋅1012 на литр.

Если эритроцитов в крови меньше, врач может поставить диагноз «анемия» (в простонародье – малокровие). Это не значит, что в организме крови меньше, чем нужно – опасения вызывает именно количество эритроцитов в каждом литре этой жидкости.

Вообще говоря, анемия – не болезнь, а симптом. Она говорит о нарушении работы организма. Задача врача – понять причину и помочь пациенту справиться с проблемой.

Чаще всего анемия возникает после значительной потери крови. Нередка она у беременных, а также у детей и пожилых людей.

Бывает, что количество эритроцитов нормальное, но гемоглобина в них недостаточно. В анализе это проявляется изменением цвета эритроцитов, поэтому в результатах указывают и цветовой показатель (ЦП). Он отражает цвет эритроцита, в норме значение должно быть между 0,86 и 1,1. Но бывают и нормохромные анемии – как раз когда эритроцитов мало, но гемоглобина в каждом из них достаточно.

С другой стороны, эритроцитов может быть больше, чем обычно. Эритроцитоз возникает при развитии новообразований, полицитемии, авитаминозе, синдроме Кушинга или водянке почечных лоханок, дыхательной и сердечной недостаточности. Также уровень эритроцитов повышается из-за лечения стероидами и кортикостероидами.

Впрочем, уровень эритроцитов может повыситься из-за обезвоживания – после тяжелой тренировки, при высокой температуре, рвоте или диарее. А вот для пилотов, стюардесс и жителей высокогорных районов повышенный уровень эритроцитов – обычное дело. Так организм справляется с недостатком кислорода на высоте.

Итак, важен баланс. В организме должно быть достаточно эритроцитов, а в каждом из них – нормальное количество гемоглобина.

Как эритроциты связаны с группой крови

В 1900 году ученый Карл Ландштейнер открыл группы крови, а спустя семь лет Ян Янски создал привычную нам систему AB0 – выделил четыре группы и два резус-фактора.

До этого переливания крови часто приводили к ухудшению состояния. Всё дело в том, что если перелить кровь от донора с неподходящей группой, эритроциты могут склеиться.

Всё дело в агглютиногенах (белках на поверхности эритроцитов) и агглютининах (антителах в плазме).

Если белки эритроцитов несовместимых групп взаимодействуют друг с другом, эритроциты склеиваются, перестают выполнять свои функции и разрушаются.

Первая группа (0) – универсальный донор: его кровь можно переливать человеку с любой группой. Четвертая (АВ) – универсальный реципиент: ему подходит кровь любой группы. Кровь группы А (второй) подходит людям с такой же или четвертой (АВ) группой, кровь группы В (третьей) – реципиентам с третьей и четвертой группами. Резус-фактор у донора и реципиента должен совпадать.

Источник: https://www.anews.com/p/124271924-ehritrocity-v-krovi-chto-ehto-pochemu-vazhen-uroven-ehritrocitov/

Большая Энциклопедия Нефти и Газа

Зрелые эритроциты

Cтраница 1

Зрелые эритроциты РЅРµ люминесцируют; РІ ретикулоцитах отмечается светящаяся красным зернистость. Желто-оранжевым светом люминесцируют кровяные пластинки.  [1]

Р�нтересно отметить, что фенилгидразин вызывает гемолиз зрелых эритроцитов Рё может быть широко использован для лечения полицитемии; однако действие фенилгидразина, РїРѕРІРёРґРёРјРѕРјСѓ, является специфическим Рё РЅРµ свойственно самому гидразину.  [2]

Р’ управлении сложным процессом дифференцировки стволовых клеток костного РјРѕР·РіР° РІ направлении формирования зрелых эритроцитов участвует специальный белок эритропоэтин. РўРµ же стволовые клетки дифференцируются РІ направлении формирования клеток РёРјРјСѓРЅРЅРѕР№ системы РїСЂРё участии РіСЂСѓРїРїС‹ белков, известных РїРѕРґ общим названием интерлейкины. Например, интерлейкин-2 стимулирует конечные фазы дифференцировки Р’ – Рё Рў – лимфоцитов РїСЂРё РёРјРјСѓРЅРЅРѕРј ответе организма РЅР° появление чужеродных антигенов.  [3]

РЇРґСЂР° имеются РІРѕ всех эукариотических клетках, Р·Р° исключением зрелых члеников ситовидных трубок флоэмы Рё зрелых эритроцитов млекопитающих. РЈ некоторых протистов, РІ частности Сѓ Paramecium, имеется РґРІР° СЏРґСЂР° – микронуклеус Рё макронуклеус.  [4]

Анаэробный распад глюкозы ( гликолиз) функционирует в тканях, в клетках которых отсутствуют митохондрии ( зрелые эритроциты человека), и в анаэробных условиях.

Конкретные реакции от глюкозы до пирувата совпадают с аэробным распадом глюкозы.

Следовательно, в анаэробных условиях образуются: 2 молекулы пирувата, 2 молекулы восстановленного НАД Н и 4 молекулы АТФ.

Однако в анаэробных условиях нет акцептора электронов в митохондриях, т.е. О2, поэтому пируват и НАДН не переносятся в митохондрии.

Р’ цитозоле сам РїРёСЂСѓ-ват принимает РІРѕРґРѕСЂРѕРґ РѕС‚ восстановленного НАДН Рќ Рё восстанавливается РІ молочную кислоту. Реакция обратима Рё катализируется лак-татдегидрогеназой: пируват НАДН Рќ – лактат.

Р�менно поэтому РІ гликолизе выделяют центральную реакцию – гликолитическую РѕРє-сидоредукцию. Р’ центральной окислительно-восстановительной реакции гликолиза РќРђР” выполняет роль промежутрчнрго переносчика РІРѕРґРѕСЂРѕРґР° РѕС‚ 3-фосфоглицеринового альдегида РЅР° пируват РІ цитозоле.  [5]

Включению железа РІ клетку предшествует связывание трансферрина специфическими мембранными рецепторами, РїСЂРё утрате которых, как, например, Сѓ зрелых эритроцитов, клетка теряет способность поглощать этот элемент. Количество железа, поступающего РІ клетку, РїСЂСЏРјРѕ пропорционально числу мембранных рецепторов. Рецепторы трансферрина, выделенные РёР· ретикулоцитов, плаценты человека, Рў – лимфоцитов, культуры фибробластов, опухолевых клеток являются гликопротеидами, образованными РґРІСѓРјСЏ субъединицами СЃ молекулярной массой около 90000 каждая. Р�спользуя флюоресцентную метку, удалось показать, что трансферрин, связанный рецептором, поступает внутрь клетки путем эндоцитоза, РіРґРµ РѕРЅ обнаруживается РІ лизосомной фракции. Р’ клетке РїСЂРѕРёСЃС…РѕРґРёС‚ высвобождение железа РёР· трансферрина, чему способствует, РїРѕ-РІРёРґРёРјРѕРјСѓ, кислая среда. Затем апотрансферрин возвращается РІ циркуляцию. Повышение потребности клеток РІ железе РїСЂРё РёС… быстром росте или синтезе гемоглобина ведет Рє индукции биосинтеза рецепторов трансферрина Рё, напротив, РїСЂРё повышении запасов железа РІ клетке число рецепторов РЅР° ее поверхности снижается.  [6]

Очевидно, каждая РёР· этих колоний порождена клеткой-предшественницей ( колониеобразующей единицей эритроидного СЂСЏРґР°, РљРћР•-Р­), которая обладала высокой чувствительностью Рє эритропоэтину; РёР· таких клеток зрелые эритроциты получаются через шесть или менее циклов деления. Число таких клеток-предшественниц РІ материале костного РјРѕР·РіР°, отбираемом для культуры, зависит РѕС‚ концентрации эритропоэтина, имевшейся Сѓ интактного животного перед взятием РїСЂРѕР±С‹. Если Сѓ животного был аномально повышенный уровень эритропоэтина РІ РєСЂРѕРІР° то РІ его костном РјРѕР·РіРµ находят необычно большое число РљРћР•-Р­, дающих эритроидные колонии РІ культуре. Поэтому можно думать, что РљРћР•-Р­ костного РјРѕР·РіР° сами РїСЂРѕРёСЃС…РѕРґСЏС‚ РѕС‚ более раннего типа клеток-предшественниц, пролиферация которых также стимулируется эритропоэтином.  [7]

Р’ организме человека образуется 160 млн эритроцитов РІ минуту; РѕРЅРё циркулируют РІ РєСЂРѕРІРё 110 – 120 дней Рё затем разрушаются.

Зрелые эритроциты – это безъядерные клетки, РЅРµ содержащие РјР РќРљ, СЂРёР±РѕСЃРѕРј Рё митохондрий; основным энергетическим процессом РІ РЅРёС… является гликолиз.

В зрелом эритроците активен пентозофосфатный путь, в процессе которого происходит восстановление НАДФН.

Синтез гемоглобина РїСЂРѕРёСЃС…РѕРґРёС‚ РІ процессе развития эритроцитов РёР· стволовых клеток костного РјРѕР·РіР°, РЅР° стадии образования незрелой безъядерной красной клетки – ретикулоцита, которая поступает РІ РєСЂРѕРІСЊ. Ретикулоциты содержат РјРЅРѕРіРѕ глобиновой РјР РќРљ Рё активно синтезируют гемоглобин, РїРѕРєР° клетка РІ процессе созревания РЅРµ превращается РІ эритроцит, утрачивающий РјР РќРљ, СЂРёР±РѕСЃРѕРјС‹ Рё митохондрии. Р’ результате зрелый эритроцит обладает упрощенным метаболизмом, нацеленным РЅР° сохранение целостности мембраны Рё предотвращение окисления гемоглобина. Эритропо-СЌР· стимулируется белком эритропоэтином, вырабатываемым РІ РјРѕР·РіРѕРІРѕРј слое почек.  [8]

РЈ человека РІ 1 РјРєР» РєСЂРѕРІРё содержится 5 10Р± эритроцитов ( красные кровяные клетки), которые образуются РІ костном РјРѕР·РіРµ. Зрелые эритроциты человека Рё РґСЂСѓРіРёС… млекопитающих лишены СЏРґСЂР° Рё почти целиком заполнены гемоглобином.  [9]

Первичная структура Р° – Рё РЅРµ Р°-глобиновых генов человека известна.

Для каждого из них установлено наличие двух нитронов ( отрезков ДНК, прерывающих кодирующие участки-экзоны) и больших некодирующих участков, находящихся на флангах генов.

Биосинтез гема, РѕСЃ – Рё СЂ-глоби-новых цепей, Р° также СЃР±РѕСЂРєР° тетрамерных молекул НЬА осуществляется РІ клетках эритроцитарного СЂСЏРґР° Рё практически завершается Рє моменту выхода зрелых эритроцитов ( РёС… продолжительность жизни Сѓ человека составляет 120 – 130 дней) РёР· костного РјРѕР·РіР° РІ РєСЂРѕРІСЏРЅРѕРµ русло.  [10]

Гормон эритропоэтин-это гликопротеин с мол. В свою очередь эритропоэтин стимулирует образование эритроцитов.

Поскольку ускоренное поступление новых эритроцитов РІ РєСЂРѕРІСЊ отмечается уже через РѕРґРёРЅ-РґРІР° РґРЅСЏ после повышения СѓСЂРѕРІРЅСЏ эритропоэтииа РІ РєСЂРѕРІРё, этот РіРѕСЂРјРѕРЅ должен воздействовать РЅР° очень близкие предшественники зрелых эритроцитов. Эти предшественники становятся чувствительными Рє эритропоэ-тину, РєРѕРіРґР° РѕРЅРё уже вступили РЅР° путь дифференцировки, ведущей Рє эритроциту. Поэтому РёС… чувствительность может служить показателем того, насколько далеко эти клетки ушли РїРѕ данному пути.  [12]

Половые различия компоненты I незначительные. Различна и возрастная динамика этого фактора.

РЎСѓРґСЏ РїРѕ тому, что величина компоненты II закономерно изменяется РїСЂРё переходе РѕС‚ РѕРґРЅРѕР№ возрастной РіСЂСѓРїРїС‹ Рє РґСЂСѓРіРѕР№, это РЅРµ случайные ( выборочные) явления, Р° отражение специфики старения женского организма, касающееся фракции зрелых эритроцитов.  [13]

Половые различия стойкости эритроцитов не имеют удовлетворительного объяснения.

Возрастная динамика компоненты II позволяет предположить, что состояние зрелых клеток в определенной мере зависит от гормональных влияний.

Отметим, что компонента II находится как бы в тени компоненты I; зрелые клетки испытывают одновременное влияние процессов, связанных с обеими компонентами.

Хотя факторный анализ РЅРµ может вскрыть причины половых различий стойкости зрелых эритроцитов, РѕРЅ делает видимым само РёС… существование.  [14]

Этот вывод подтверждают дальнейшие исследования на тканевых культурах. Для формирования этих колоний требуется семь-десять дней, а не два дня, как для мелких эритроцитарных колоний.

ВОЕ-Э отличаются от плюрипотентных стволовых клеток тем, что в ответ на воздействие эритропоэтина они пролиферируют, производя эритроциты.

Отличие от КОЕ-Э состоит в том, что для стимуляции ВОЕ-Э нужен более высокий уровень гормона и от зрелых эритроцитов их отделяют 12 клеточных делений.

Эти клетки отличаются РѕС‚ РљРћР•-Р­ еще Рё РїРѕ размерам, Рё РёС… можно отделить РѕС‚ последних центрифугированием.  [15]

Страницы:      1    2

Источник: https://www.ngpedia.ru/id621018p1.html

Эритроцит

Зрелые эритроциты

Эритроцит

Эритроциты также известные под названием красные кровяные тельца – клетки крови позвоночных животных (включая человека) и гемолимфы некоторых беспозвоночных (сипункулид, у которых эритроциты плавают в полости целома и некоторых двустворчатых моллюсков). Они насыщаются кислородом в лёгких или в жабрах и затем разносят его по телу животного.Их цитоплазма богата гемоглобином — пигментом красного цвета, содержащим атом железа, который способен связывать кислород и придаёт эритроцитам красный цвет.Человеческие эритроциты — очень маленькие эластичные клетки дисковидной двояковогнутой формы. Размер и эластичность способствуют им при движении по капиллярам, их форма повышает площадь поверхности и облегчает газообмен. В них отсутствует клеточное ядро и большинство органелл, что повышает содержание гемоглобина. Около 2,4 миллиона новых эритроцитов образуется в костном мозге каждую секунду. Они циркулируют в крови около 100—120 дней и затем поглощаются макрофагами. Приблизительно четверть всех клеток в теле человека — эритроциты.

Функции:

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2—3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем — комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо кординируется с ионом Fe2+ гемоглобина, образуя оксигемоглобин HbO2:

Hb + O2 HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы, содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H2O + CO2 H+ + HCO3-

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина.

Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионные каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорида (хлоридный сдвиг).

Формирование эритроцитов:

Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни — 3—4 месяца, разрушение (гемолиз) происходит в печени и селезёнке.

Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

Полипотентная стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза (КОЕ-ГЭММ), которая в случае эритропоэза даёт клетку-родоначальницу миелопоэза (КОЕ-ГЭ), которая уже даёт унипотентную клетку, чувствительную к эритропоэтину (БОЕ-Э).

Бурстобразующая единица эритроцитов (БОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • Эритробласт. Отличительные признаки его таковы: d=20+25 мкм, крупное (более 2/3 всей клетки) ядро с 1-4 чётко оформленными ядрышками, ярко-базофильная цитоплазма с фиолетовым оттенком. Вокруг ядра имеется просветление цитоплазмы (т. н. «перинуклеарное просветление»), а на периферии могут формироваться выпячивания цитоплазмы (т. н. «ушки»). Последние 2 признака хотя и являются характерными для этитробластов, но не наблюдаются у них всех.
  • Пронормоцит. Отличительные признаки: d=10-20 мкм, ядро лишается ядрышек, хроматин грубеет. Цитоплазма начинает светлеть, перинуклеарное просветление увеличивается в размере.
  • Базофильный нормобласт. Отличительные признаки: d=10-18 мкм, лишённое нуклеоол ядро. Хроматин начинает сегментироваться, что приводит к неравномерному восприятию красителей, формированию зон окси- и базо- хроматина (т. н. «колесовидное ядро»).
  • Полихроматофильный нормобласт. Отличительные признаки: d=9-12 мкм, в ядре начинаются пикнотические (деструктивные) изменения, однако колесовидность сохраняется. Цитоплазма приобретает оксифильность вследствие высокой концентрации гемоглобина.
  • Оксифильный нормобласт. Отличительные признаки: d=7-10 мкм, ядро подвержено пикнозу и смещено на периферию клетки. Цитоплазма явно розовая, вблизи ядра в ней обнаруживаются осколки хроматина (тельца Жоли).
  • Ретикулоцит. Отличительные признаки: d=9-11 мкм, при суправитальной окраске имеет жёлто-зелёную цитоплазму и сине-фиолетовый ретикулюм. При покраске по Романовскому-Гимзе никаких отличительных признаков по сравнению со зрелым эритроцитом не выявляется. При исследовании полноценности, скорости и адекватности эритропоэза проводится специальный анализ количества ретикулоцитов.
  • Нормоцит. Зрелый эритроцит, с d=7-8 мкм, не имеющий ядра (в центре — просветление), цитоплазма — розово-красная.

Гемоглобин начинает накапливаться уже на этапе КОЕ-Э, однако его концентрация становится достаточно высокой для изменения цвета клетки лишь на уровне полихроматофильного нормоцита. Так же происходит и угасание (а впоследствии и разрушение) ядра — с КОЕ, но вытесняется оно лишь на поздних стадиях.

Не последнюю роль в этом процессе у человека играет гемоглобин (основной его тип — Hb-A), который в высокой концентрации токсичен для самой клетки. Гемопоэз (в данном случае эритропоэз) исследуется по методу селезёночных колоний.У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Структура и состав:

У большинства групп позвоночных эритроциты имеют ядро и другие органоиды.У млекопитающих зрелые эритроциты лишены ядер, внутренних мембран и большинства органоидов. Ядра выбрасываются из клеток-предшественников в ходе эритропоэза. Обычно эритроциты млекопитающих имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин.

У некоторых животных (например, верблюда) эритроциты имеют овальную форму.Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Эритроциты (красные кровяные тельца) человекаВажную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Плазмолемму пронизывают трансмембранные белки — гликофорины, которые, благодаря большому количеству остатков сиаловой кислоты, ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеидной природы — агглютиногены — факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус фактор, антиген Даффи, антиген Келл, антиген Кидд), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы — 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы — 4 мкм в диаметре).

У человека диаметр эритроцита составляет 6,2—8,2 мкм, толщина — 2 мкм, объём — 76-110 мкм³.

В одном литре крови содержится эритроцитов:

  • у мужчин 4,5·1012/л—5,5·1012/л (4,5—5,5 млн в 1 мм³ крови),
  • у женщин — 3,7·1012/л—4,7·1012/л (3,7—4,7 млн в 1 мм³),
  • у новорождённых — до 6,0·1012/л (до 6 млн в 1 мм³),
  • у пожилых людей — 4,0·1012/л (меньше 4 млн в 1 мм³).

Переливание крови:При переливании крови от донора к реципиенту возможна агглютинация (склеивание) и гемолиз (разрушение) эритроцитов. Чтобы этого не происходило, необходимо учитывать группы крови, открытые Карлом Ландштейнером и . Янским в 1900 году. Агглютинацию вызывают белки, находящиеся на поверхности эритроцита — антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины). Существуют 4 группы крови, для каждой характерны различные антигены и антитела. Переливание обычно проводится лишь между обладателями одной группы крови.

Место в организме:

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что даёт им время передать кислород от гемоглобина к миоглобину.

Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Количество эритроцитов в крови в норме поддерживается на постоянном уровне (у человека в 1 мм³ крови 4,5—5 млн эритроцитов, у некоторых копытных 15,4 млн (лама) и 13 млн (коза) эритроцитов, у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90—130 тыс.

) Общее число эритроцитов снижается при анемиях, повышается при полицитемии.Продолжительность жизни эритроцита человека в среднем 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается), у собак — 107 дней, у кроликов и кошек — 68.

Патология:

При различных заболеваниях крови возможно изменение цвета эритроцитов, их размеров, количества, а также формы; они могут принимать, например, серповидную, овальную, сферическую или мишеневидную форму.Изменение формы эритроцитов называется пойкилоцитозом.

Сфероцитоз (сферическая форма эритроцитов) наблюдается при некоторых формах наследственной анемии. Эллиптоциты (эритроциты овальной формы) встречаются при мегалобластной и железодефицитной анемии, талассемиях и других заболеваниях.

Акантоциты и эхиноциты (эритроциты шиповатой формы) встречаются при поражениях печени, наследственных дефектах пируваткиназы и др. Мишеневидные эритроциты (кодоциты) — это клетки с бледной тонкой периферией и центральным утолщением, содержащем скопление гемоглобина.

Встречаются при талассемиях и других гемоглобинопатиях, интоксикации свинцом и др. Серповидные эритроциты — признак серповидноклеточной анемии. Встречаются и другие формы эритроцитов.

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7,43 до 7,33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

Среднее содержание гемоглобина для мужчин 13,3—18 г% (или 4,0—5,0·1012 единиц), для женщин 11,7—15,8 г% (или 3,9—4,7·1012 единиц). Единица измерения уровня гемоглобина представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.

Источник: https://gemofiliya-ua.ru/166-eritrocit.html

Эритроциты

Зрелые эритроциты

Цитоплазма   гемоглобин   миоглобин    цитохромы

Кислород     железо

Ткань:соединительная

История дифференцировки клетки:

Зигота → Бластомер → Эмбриобласт → Эпибласт → Клетка первичной мезодермы → Прегемангиобласт → Гемангиобласт → Гемоцитобласт →

Миелобласт → Проэритробласт → Базофильный нормобласт → Полихроматофильный нормобласт → Ортохроматофильный нормобласт → Ретикулоцит → Эритроцит

эритропоэз- формирование

гемолиз  разрушение происходит в печени и селезёнке

эритрон

Эритроци́ты (кра́сные кровяны́е тельца́) — постклеточные структуры крови. Они насыщаются кислородом в лёгких и затем разносят кислород по телу.

 Цитоплазма эритроцитов богата гемоглобином — пигментом красного цвета, содержащим атом железа, который способен связывать кислород и придаёт эритроцитам красный цвет.

 Человеческие эритроциты — очень маленькие эластичные клетки дисковидной двояковогнутой формы диаметром от 7 до 10 мкм. Размер и эластичность способствуют им при движении по капиллярам, их форма повышает площадь поверхности и облегчает газообмен.

В них отсутствует клеточное ядро и большинство органелл, что повышает содержание гемоглобина. Около 2,4 миллиона новых эритроцитов образуется в костном мозге каждую секунду[3]. Они циркулируют в крови около 100—120 дней и затем поглощаются макрофагами.

Приблизительно четверть всех клеток в теле человека — эритроциты[4].

Функции

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У эритроцитов человека ядро отсутствует.

 Эритроциты человека, лишены в зрелом состоянии ядра и органелл и имеют форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2—3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем — комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо координируется с ионом Fe2+ гемоглобина, образуя оксигемоглобин HbO2:

Hb + O2 HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы, содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H2O + CO2 H+ + HCO3-

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина.

Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионные каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорид-аниона (хлоридный сдвиг).

Формирование эритроцитов

Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног.

Продолжительность жизни — 3—4 месяца, разрушение (гемолиз) происходит в печени и селезёнке.

Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

Полипотентная стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза (КОЕ-ГЭММ), которая в случае эритропоэза даёт клетку-родоначальницу миелопоэза (БОЕ-Э), которая уже даёт унипотентную клетку, чувствительную к эритропоэтину (КОЕ-Э).

Колониеобразующая единица эритроцитов (КОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • Эритробласт. Отличительные признаки его таковы: d=20+25 мкм, крупное (более 2/3 всей клетки) ядро с 1-4 чётко оформленными ядрышками, ярко-базофильная цитоплазма с фиолетовым оттенком. Вокруг ядра имеется просветление цитоплазмы (т. н. «перинуклеарное просветление»), а на периферии могут формироваться выпячивания цитоплазмы (т. н. «ушки»). Последние 2 признака хотя и являются характерными для этитробластов, но не наблюдаются у них всех.
  • Пронормоцит. Отличительные признаки: d=10-20 мкм, ядро лишается ядрышек, хроматин грубеет. Цитоплазма начинает светлеть, перинуклеарное просветление увеличивается в размере.
  • базофильный нормобласт. Отличительные признаки: d=10-18 мкм, лишённое нуклеоол ядро. Хроматин начинает сегментироваться, что приводит к неравномерному восприятию красителей, формированию зон окси- и базо- хроматина (т. н. «колесовидное ядро»).
  • Полихроматофильный нормобласт. Отличительные признаки: d=9-12 мкм, в ядре начинаются пикнотические (деструктивные) изменения, однако колесовидность сохраняется. Цитоплазма приобретает оксифильность вследствие высокой концентрации гемоглобина.
  • Оксифильный нормобласт. Отличительные признаки: d=7-10 мкм, ядро подвержено пикнозу и смещено на периферию клетки. Цитоплазма явно розовая, вблизи ядра в ней обнаруживаются осколки хроматина (тельца Жоли).
  • Ретикулоцит. Отличительные признаки: d=9-11 мкм, при суправитальной окраске имеет жёлто-зелёную цитоплазму и сине-фиолетовый ретикулюм. При покраске по Романовскому-Гимзе никаких отличительных признаков по сравнению со зрелым эритроцитом не выявляется. При исследовании полноценности, скорости и адекватности эритропоэза проводится специальный анализ количества ретикулоцитов.
  • Нормоцит. Зрелый эритроцит, с d=7-8 мкм, не имеющий ядра (в центре — просветление), цитоплазма — розово-красная.

Гемоглобин начинает накапливаться уже на этапе КОЕ-Э, однако его концентрация становится достаточно высокой для изменения цвета клетки лишь на уровне полихроматофильного нормоцита.

Так же происходит и угасание (а впоследствии и разрушение) ядра — с КОЕ, но вытесняется оно лишь на поздних стадиях. Не последнюю роль в этом процессе у человека играет гемоглобин (основной его тип — Hb-A), который в высокой концентрации токсичен для самой клетки.

Гемопоэз (в данном случае эритропоэз) исследуется по методу селезёночных колоний.

У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Структура и состав

У большинства групп позвоночных эритроциты имеют ядро и другие органоиды.

У млекопитающих зрелые эритроциты лишены ядер, внутренних мембран и большинства органоидов. Ядра выбрасываются из клеток-предшественников в ходе эритропоэза. Обычно эритроциты млекопитающих имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин. У некоторых животных (например, верблюда) эритроциты имеют овальную форму.

Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Плазмалемму пронизывают трансмембранные белки — гликофорины, которые, благодаря большому количеству остатков сиаловой кислоты, ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеидной природы — агглютиногены — факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус фактор, антиген Даффи(англ.), антиген Келл, антиген Кидд(англ.)), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры.

У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы — 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы — 4 мкм в диаметре).

У человека диаметр эритроцита составляет 6,2—8,2 мкм[5], толщина — 2 мкм, объём — 76-110 мкм³[6].

В одном литре крови содержится эритроцитов:

  • у мужчин 4,5·1012/л—5,5·1012/л (4,5—5,5 млн в 1 мм³ крови),
  • у женщин — 3,7·1012/л—4,7·1012/л (3,7—4,7 млн в 1 мм³),
  • у новорождённых — до 6,0·1012/л (до 6 млн в 1 мм³),
  • у пожилых людей — 4,0·1012/л (меньше 4 млн в 1 мм³).

Переливание крови

При переливании крови от донора к реципиенту возможна агглютинация (склеивание) и гемолиз (разрушение) эритроцитов. Чтобы этого не происходило, необходимо учитывать группы крови, открытые Карлом Ландштейнером в 1900 году.

Агглютинацию вызывают белки, находящиеся на поверхности эритроцита — антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины). В системе AB0, сформулированной Яном Янски[en] в 1907 году, выделяются 4 группы крови, для каждой из которых характерны различные антигены и антитела.

Переливание обычно проводится лишь между обладателями одной группы крови.

I — 0II — AIII — BIV — AB
αββα

Место в организме

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что даёт им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Количество эритроцитов в крови в норме поддерживается на постоянном уровне (у человека в 1 мм³ крови 4,5—5 млн эритроцитов, у некоторых копытных 15,4 млн (лама) и 13 млн (коза) эритроцитов, у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90—130 тыс.) Общее число эритроцитов снижается при анемиях, повышается при полицитемии.

Продолжительность жизни эритроцита человека в среднем 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается), у собак — 107 дней, у кроликов и кошек — 68.

Патология

При различных заболеваниях крови возможно изменение цвета эритроцитов, их размеров, количества, а также формы; они могут принимать, например, серповидную, овальную, сферическую или мишеневидную форму.

Изменение формы эритроцитов называется пойкилоцитозом[en]. Сфероцитоз (сферическая форма эритроцитов) наблюдается при некоторых формах наследственной анемии. Эллиптоциты (эритроциты овальной формы) встречаются при мегалобластной и железодефицитной анемии, талассемиях и других заболеваниях.

Акантоциты и эхиноциты (эритроциты шиповатой формы) встречаются при поражениях печени, наследственных дефектах пируваткиназы и др. Мишеневидные эритроциты (кодоциты) — это клетки с бледной тонкой периферией и центральным утолщением, содержащем скопление гемоглобина. Встречаются при талассемиях и других гемоглобинопатиях, интоксикации свинцом и др.

Серповидные эритроциты — признак серповидноклеточной анемии. Встречаются и другие формы эритроцитов[7].

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7,43 до 7,33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

Среднее содержание гемоглобина для мужчин — 13,3—18 г% (или 4,0—5,0·1012 единиц), для женщин — 11,7—15,8 г% (или 3,9—4,7·1012 единиц). Единица измерения уровня гемоглобина представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.[8]

 

Эритроциты человека: a) нормальные — двояковогнутые; b) нормальные, вид с ребра; c) в гипотоническом растворе, разбухшие (сфероциты); d) в гипертоническом растворе, съёжившиеся (эхиноциты)

Источник: https://xn--b1aaakaba9b1aeojjo1b6af.xn--p1ai/ru/sistemy-organov-2/organy-krovetvoreniya/eritrotsity

Доктор Новиков
Добавить комментарий